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Abstract
Abstract

A partir de las dificultades que implica el uso de herramientas del cálculo no en-
tero o fraccional aplicados al modelado y control de sistemas dinámicos, se resuelven
dos limitantes en el diseno de sistemas de control de tipo fraccional, la sintonización e
implementación de controladores PIλDIµ.

En este trabajo se propone una solución a través de circuitos analógicos program-
ables y reconfigurables al reto de implementar físicamente controladores PID de orden
fraccional, se muestra también una herramienta accesible a estudiantes e ingenieros
(MATLAB) para realizar la sintonización de este tipo de controladores.

Currently the PID controller is the most widely used in industry due to its simple
structure and relatively easy understanding. This work proposes the introduction of
a fractional order PID controller to obtain a more flexible and robust control than the
conventional PID, with the inclusion of two additional degrees of freedom. The PIλDIµ

controller has an integrator of order λ and a differentiator of order µ, with λ, µ ∈ (0,2)
allowing to add restrictions and specifications for the tuning process, improving the per-
formance of the system response. In addition, it is proposed the use of reconfigurable
devices, such as FPGAs or FPAAs, to make changes in situ. It is also proposed the use
of neural networks to estimate the values P, I, D, λ and µ in order to make the system
insensible to variations in the plant parameters.

Keywords

Controlador PID fraccional, implementación de operador de Laplace no entero, PID
fraccional analógico, aproximación de derivada e integral no entera.
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Research approachChapter 1: Research approach

1.1 Introduction

The time and frequency response of electronic, mechanical or electromechanical sys-
tems widely used in various industries is often expected to improve. It can even occur that
during any time of the operation those systems face unforeseen circumstances within its
range of action and being necessary to compensate its operation to obtain greater speed,
greater stability, lower energy costs, etc. To have superior performance subsystems are
incorporated in place to compensate the frequency or temporal response avoiding abrupt
changes to unforeseen entries, maintaining oscillations as small as possible or responding
quickly but within an acceptable range. These systems are known because of their func-
tion as compensators or controllers and are composed mainly of mechanical, electronic
or embedded systems.

Among many control strategies, such as lead-lag networks [2], root locus [?], sliding
modes [3] and others, the Proportional Integral Derivative control algorithm (PID) is the
most used in the industry due to its simple structure and its relatively easy understand-
ing [?]. Nevertheless, many real physical systems are modeled more accurately from
differential equations of fractional or non integer order instead integer ones, therefore
fractional order control techniques have been explored to produce a more flexible and
robust control of these systems than the conventional PID [4]. Thus in 1997 Podlubny [5]
proposed a fractional order generalization of the PID controller which included an inte-
grator of order λ and a differentiator of order µ where λ, µ ∈ (0,2). The incorporation of
this two additional degrees of freedom in the control design process allowed to add more
specifications and restrictions to the system response improving the performance through
the process of tuning proportional, integral and derivative gains as well as the non integer
order parameters λ and µ.

Unfortunately, the main disadvantage of the fractional-order PID controller (FOPID) is
that its analog implementation is still an open problem because the reported implemen-
tations are rather bulky and hard to accomplish with commercial component values of
resistors, capacitors and inductors [6–8]. Besides, the tuning of its five parameters is an
optimization problem [9].

1.2 Description of the problem

In the literature, several fractional PID controller parameters tuning techniques have
been reported [9–17], which allow to pose the problem of control as a set of simultaneous
nonlinear equations [9]. Unfortunately, those procedures suppose a complete knowledge
of the parameters of the plant. Even more, if the plant features changing conditions, then
it is necessary to re-characterize these parameters, rethink the system of equations and
modify some hardware related to the controller. A solution to the problem of changing
plant conditions was proposed in [1], where the fractional PID controller was tuned from
the training of Radial-Based Neural Networks (RBNN), one for each of its five parameters:
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Chapter 1. Research approach

proportional gain KP , integral gain KI , derivative gain KD, λ the fractional order of the
signal error integral y µ fractional order of the signal error derivative. In [1] restrictions
were set up on the system response composed by the plant and the fractional PID con-
troller to carry out the training of the neural networks. These restrictions were: (1) margin
gain, (2) margin phase, (3) high frequency noise rejection, (4) output disturbance rejection
(sensitivity) and (5) robustness to variations in the plant gain.

The chosen plant was modeled with a pole and a term for the transport delay. Finally,
simulation results were showed. Unfortunately, the solution reported in [1] was only val-
idated by means of simulation results. The same happens with other reported works (for
instance, [12,17,18]). In consequence, the problems related to a possible implementation
of the designed FOPID are not addressed. This difficulty stems from the fact that there
are no circuit elements with fractional order response (for example, the so-called "frac-
tal capacitors"). Some authors propose to make approximations of fractional integrators
with rational functions of the Laplace variable ’s’, however, this practice results in bulky
circuits with capacitor and resistor arrays with values difficult to acquire commercially.
The problem is aggravated when considering a plant with changing characteristic since
this approach of fractional integrators would have to be redesigned which totally changes
those arrays.

1.3 Proposed solution and possibility of contribution

In Chapter 2 of this thesis are presented the states-of-the-art respect to tuning meth-
ods of the parameters of the FOPID and respect to analog implementation of fractional
order systems. From those analysis, and starting from the reported work in [1], it is
proposed a solution for a practical implementation of fractional order PID controller by
means of opamp-based building blocks and by mean of reconfigurable hardware. Ac-
cording to Figure 1.1, a model of a plant and the FOPID control will be implemented in
hardware from development boards with field-programmable analog arrays (FPAA) model
AN231E04 from the manufacturer Anadigm. For this, a methodology is proposed for
the implementation of fractional order integrators and differentiators, just modifying the
gains of integral and differential amplifiers. This methodology will allow to establish the
orders of the derivative and integral fractional modifying only the gains of the differential
amplifiers, thus avoiding the need for arrays of resistor and capacitor whose commercial
values are not common or difficult to acquire.

Moreover, being electrically reconfigurable, the use of FPAAs will not stop the system
function or make changes to the hardware when there is a need to compensate plant vari-
ations. These variations may also be modeled and electrically established with the FPAA
for system testing purposes. Neural networks will be trained offline with the criteria set
out in [1]. A solution to perform both the optimization of values (tuning) as to implement
the RBF neural network with minimal errors is to use robust tools such as the MATLAB
computer program.
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1.4 Methodology

Figure 1.1: Fractional PID plant-controller system with negative feedback.

1.4 Methodology

In the laboratory of the Academic Body of Electronics CA-3 from Universidad Politéc-
nica de Puebla, we had the following infrastructure, sufficient for the realization of this
project: eight development boards AN231E04, a high-resolution oscilloscope (12 bits)
HDO6000 at 300MHz, an arbitrary signal differential generator ArbStudio, amplifiers, at-
tenuators and differential tips, a data acquisition card ELVIS-II among other digital and
analog instrumentation.

For the training of neural networks and the simulation of the complete system we used
Simulink of MATLAB and HSPICE for simulation at the circuit level. Anadigm Designer 2
software was also used for the programming and simulation of the FPAA.

1.5 General objective

To develop a methodology to implement with both, opamp-based circuits and FPAAs,
first-order plus dead-time plants controlled by means of fractional-order PID controllers,
which are tuned by means of RBNN in order to obtain reconfigurable systems, robust to
tolerances in the plant parameters and avoiding the use of non-commercially available
passive elements.

Implement a fractional order PID control system, in field-programmable analog ar-
rangements FPAA-AN231E04, tuned from radial-based neural networks trained offline
with MATLAB.
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Chapter 1. Research approach

1.6 Particular objectives

1. To perform a comparative study of the fractional PID controllers reported in the liter-
ature for the determination of the plant and the tuning techniques of the controller
to be implemented.

2. To propound, based on the characteristics of the plant and the specifications and
design constraints of the control system, the simultaneous nonlinear equations to
solve with MATLAB to establish the values of the parameters P, I, D, λ, µ of the
controller.

3. To perform the training of radial-based neural networks in MATLAB to obtain the
data set P, I, D, λ, µ under changing conditions.

4. To model the plant and the fractional PID controller in the form of electronic circuits
for conducting physical tests and characterization from field programmable analog
arrays FPAA231E04 and opamp-based circuits.

1.7 Justification

The implementation of a fractional system, either the plant or its control, imposes
the need to develop a method for adjusting physically the values λ y µ in the most agile
way. From the two general approaches, one digital and the other analog, requirements
for implementation are revealed, e.g., the digital makes use of a microprocessor and an
appropriate control algorithm while analogue implementation involves the application
of analog circuits and fractal elements which are approximated actually by bulky and
complicated arrangements of resistors and capacitors with values difficult to acquire
commercially.

Not having affordable fractal elements to anyone interested in deploying non-integer
order systems makes it difficult to penetrate fractional PID control in industry, that is,
the characteristics associated with the configuration of fractal elements prevent control
engineers from taking advantage of the fractional PID control over conventional PID con-
trol. Therefore, the development of a simple methodology to implement in reconfigurable
hardware the fractional PID control will provide the conditions to take advantage of a
more flexible and robust control.

Thus, the implementation proposal translates the use of arrays made up of ordinary
passive elements of fractional behavior to the adjustment in the gains of differential am-
plifiers and integer order integrators to set the non -integer specified order, so that, will
allow the more agile and productive experimental development of fractional order con-
trol systems that provide superior control over the responses in time and frequency than
integer order systems.

Furthermore, the use of neural networks will allow an easy adjustment of the control
system in case that significant changes are detected in the plant, without making changes
to the implementation in hardware, thanks to the on-site programming of the FPAAs.
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Figure 1.2: Fractional-order PID controller divided into its main parts.

1.8 Structure of the thesis

In the next four chapters there is an approach for every aspect of the proposed solu-
tion. In Chapter 2 it is founded the fundamental concepts of fractional calculus and PID
controller as the state of the art in the implementation of fractional systems, the fractional
PID controller and tuning techniques. In Chapter 3 the proposed solution is presented
through an analog method of approximation to develop fractional operators. On Chapter
4 the proposed tuning method is described. In Chapter 5 there is an example of applica-
tions in the field of filters using the proposed method. Figure ?? shows a division of how
the fractional order PID controller is seen in this work, according to the parts are to be
covered, analog implementation, tuning and the use of computational tools (MATLAB).
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Theoretical background and state of the artChapter 2: Theoretical background and state of the art

2.1 Derivative and integral of fractional order

The fractional calculus is a generalization of the differentiation and integration of
arbitrary order, not precisely integer. A more correct term to call it should be non-integer
order calculus since the order may be even irrational or imaginary [19,20], but keeping it
simple the most common meaning has already been given: fractional calculus.

There are several definitions of the derivative and integral of non-integer order that
show the existence of both fundamental operators of arbitrary order and are basically
obtained using the conventional definitions of integrals and derivatives repeatedly in an
iterative process, in the analogous sense to what a notation of exponents represents for
multiplication of a numerical value by itself as x2=x ∗ x. Geometric interpretation or
physical meaning of each fractional operator is not the subject of this thesis nor will be
detailed in this document. Among all definitions for calculating fractional derivatives and
integrals, Riemann-Lieuville definition establishes [20]

Dαt f (t) =
1

Γ(m − α)

( d
dt

)m ∫ t

0

f (τ)dτ
(t − τ)α−m+1 2.1

where α ∈ R, m −1<α<m, m ∈ N and Γ(·) is Gamma function. For α>0, α<0 and α=0 one
gets the fractional derivative, integral and identity function.

2.1.1 Properties

The properties of the fractional operator are as follows [?]:

1. If f (t) is an analytical function, then the fractional order operator aDα
t is also ana-

lytical with respect to t.

2. If α=n y n ∈ Z+, then the operator 0Dα
t can be understood as the usual operator

dn

dtn
.

3. The operator or order α=0 is the identity operator 0D0
t f (t)=f (t).

4. Fractional order differentiation is linear; if a, b are constant, then

0D
α
t [af (t) + bg(t)] = a 0D

α
t f (t) + b 0D

α
t g(t)

5. For fractional order operators with R(α)>0, R(�)>0, and under reasonable restric-
tions on the function f (t) the additive law of exponents is preserved

0D
α
t

[
0D

�
t f (t)

]
= 0D

�
t
[
0D

α
t f (t)

]
= 0D

α+�
t f (t)

6. The fractional order of the derivative commutes with the derivative of integer order

dn

dtn
[
aD

α
t f (t)

]
= aD

α
t

[
dn

dtn
f (t)

]
= aD

α+n
t f (t),
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under the condition t=a, f k(a)=0 for k integer greater than or equal to zero and less
than n.

2.1.2 Laplace fractional operator and transfer function

The Laplace transform is an essential tool in engineering and control systems. A
function F (s) of the complex variable s is called the Laplace transform of the original
function f (t) and is defined as

F (s) = L [f (t)] =

∫ ∞

0

f (τ)
(t − τ)α−m+1dτ 2.2

The original function f (t) can be recovered from the Laplace transform F (s) by the
application of the inverse Laplace transform defined as

f (t) = L −1[F (s)] =
1

2πj

∫ c+j∞

c−j∞
estF (s)ds 2.3

with c greater than the real part of all poles of the function F (s).

Laplace Transform with initial conditions equal to zero of (2.1) is given by [20]

L
{
Dαt f (t)

}
= sαF (s) 2.4

where sα is the Laplace operator of fractional order expressed as [20]

sα = (jω)α = ωα
[
cos

(απ
2

)
+ j sin

(απ
2

)]
2.5

2.2 Analogue implementation of fractional order Laplace oper-

ators

The challenge in implementing fractional-order systems is related to the non-existence
of circuit elements that reproduce the operator sα, therefore it is necessary to have good
approximations of 2.5 with a minimum of parameters. Preferably approximations or
equivalences in rational form, with poles and zeros. There are Power Series Expansion
(PSE), Continuous Fraction Expansion (CFE), discretization by the recursive method of
Muir, among others [6, 7, 18]. Regarding the analog implementation, there are basic
devices that fulfill the purpose of approaching a fractional behavior. The most popular
is the network with ladder circuits [6, 18, 21]; the other consists of electrical elements
with a tree structure and the transmission line circuit [18]. These devices are constituted
by branches of the three ordinary passive electrical elements: resistor, inductor and
capacitor and sometimes it require negative impedance converters. Two other concepts
for implementation are through Warburg’s impedance built with impedances in ladder
structure [18] and integrating operational amplifiers [6,18], and the fractor [18], which is
a new electrical element with fractional frequency-dependent impedance made of special
materials, composites. The most widespread method among different authors is to use
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2.2 Analogue implementation of fractional order Laplace operators

Figure 2.1: Method of Cauer for circuit synthesis.

the Oustaloup filter to perform the approximation of the operator sα in the frequency
domain [7,18].

Analog approximation of fractances are characterized by a magnitude response with
roll-off ±20α decibels by decade, and a constant-phase response at all frequencies of ±90α
degrees [7]. For example, a fractal capacitor has impedance Z=1/(sλC). The fractances
can be approached in a desired bandwidth with rational functions from the methods of
Newton, Muir, Oustaloup, Matsuda, power series expansion (PSE), continuous fractions
expansion (CFE), among others [7,18]. Once a rational function is obtained it can be syn-
thesized with ladder networks, tree structure, or transmission lines [7,18] [?]. The circuit
components can be resistors, inductors, capacitors and sometimes negative impedance
converters [6,7,18,22]. One example for synthesis by Cauer method is given in Fig. 2.1.

Ladder networks by synthesis of electrical circuits were developed almost a century
ago in the 1920’s by Cauer and Foster. Its canonical forms use LC networks which
find the coefficients by a continuous fraction expansion. When using just two kinds of
elements, the remaining impedance must be positive real but if RLC elements are used
negative impedances could appear [18].

The works of Bode y Antoniou left some advances in the use of operational amplifiers
after 1960, that mixed with non integral impedances made possible active fractional de-
vices. Also, Dutta Roy developed in those years constant-argument immitance (impedance
or admittance) [18]

In 2002 Podlubny presented an approach using analogue circuits for the implementa-
tion of fractional-orders controllers, compiling Carlson, Matsuda and Oustaloup methods,
among other CFE like methods to develop building blocks of fractional operators [6].

In 2006 there were published works of Biswas and Tenreiro showing some advances
in the fabrication of electrochemical devices with fractal response [?,23]. This devices are
complex and even not very developed to make it useful in the design of integrated circuits.

During the beginning of this decade were published some compilations of the new
tendencies in the field of both, digital and analog implementations. Chen and Krishna
are good examples of this initiative [7,18].
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Method Includes Advantages Disadvantages

Cauer

Rational Foster Stability Computed values

approximation Carlson Few iterations not usually available

Matsuda Convergence in large domains Sometimes needs

[6–8,18,21] Oustaloup Work for arbitrary orders negative impedances

Tree type Inductors are bulky

Net grid

Transmission

line Warburg Use identical R-series, C-shunt Fixed Sα or S−α

[18]

CPE Capacitive probe Chemically Expensive

[18,23,25] (difussion) designed Bulky

Active NIC (Z + OpAmps) Cover negative impedance Power supply

[6,18,21,22,24,26] FO capacitor/inductor needed

Table 2.1: Comparison of the implementations of fractional sα operators.

Recent studies are more focused on non linear behavior in networks, biological sys-
tems and its interconnection. One interesting study over recent technology is found in
Pu’s work [24].

2.3 PID

When the dynamics of a system or its components is known then is possible to model
its behavior and know how it will act under certain circumstances. Under this assump-
tion, corrective actions can be applied. However it is frequent to find that it is unknown
some part or practically all the nature of the systems. In consequence, despite the abun-
dance of today’s sophisticated tools, a type of control in which engineers in many indus-
tries rely on is the proportional, integral and derivative controller, the PID controller [27].
It is estimated that more than 90% processes involving feedback have one of these or
some of its variants [18,27]. In general from the PID control the following functions can
be emphasized: it provides feedback, it has the ability to eliminate steady state errors
through integral action and can anticipate future states through derivative action [27].

In 1922, technical considerations related to PID control began to be taken more rigor-
ously. In the decade of the 40’s some studies lead to established rules for the PID tuning
by means of the method of Ziegler-Nichols and since then there are numerous empirical
or analytical approaches to their tuning.

The PID controller scheme is shown in Figure 2.2 (a). It is formed by blocks with an
input leading to the controller with a power stage, the plant and an output. The whole
block is feedback by a sensor that extracts the signal of exit to lead it to the entrance
and to close the loop. The framed block at the beginning generates its control action
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2.3 PID

Figure 2.2: (a) Proportional-Integral-Derivative controller (PID). (b) PID controller general-
ized to fractional order (PIλDµ controller).

according to the error derived from extracting the difference between the input and the
output driven by the sensor. Therefore, the analog PID equation is

u(t) = KPe(t) + KI

∫
e(t)dt + KD

e(t)
dt

2.6

where K specifies proportional gain, TI characterizes the integral action, also known as
the integral-time constant and TD represents the derivative action and is known as the
derivative time constant. The integral term of the PID controller is TI = 1/KI and is defined
as the period for which the integrating effect on the error is equivalent to the proportional
action. The derivative term of the PID controller is TD = KD and is defined as the period
for which the differentiating effect on the error is equivalent to the proportional action.

Due to the proportional action, a comparison of the output is made with the value
fixed at the input (setpoint), the integral action eliminates the steady state error when the
reference is constant and the derivative action reacts to large change rates before the error
takes up high values. Table 2.2 shows the effects exerted by each action on the general
behavior of the control system. In general terms the PID control is robust to variations
when all three parameters are correctly tuned [27].

It is important to note when the PID controller can be used in a process and when it is
not convenient. If the performance requirements are not very strict this controller can be
included and also when the system is of second order or in rigid systems; The PI version
can be applied when the system dynamics is of first order or higher order but sufficiently
damped and at low frequencies or with reduced bandwidth, some engineers or operators
prefer to cancel the effect of the derivative action due to difficulties for precise tuning. On
the contrary, it is not advisable to apply it when dealing with higher order systems, with
long dead times or systems with oscillatory modes [27].
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Rise time Maximum override Settle Steady state

time error

P Decrease Grow Small changes Decrease

I Decrease Grow Grow Elimination

D Small changes Decrease Decrease Small changes

Table 2.2: Effects of each control action on the system.

2.4 PIλDµ controller

The first reported application of fractional calculus was in physics when Abel used it to
solve the problem of tautochronous movement, more recently applications in mechanics
and electrical have been published [14, 18, 26, 28]. Due to the absence of appropriate
mathematical methods, non-integer order dynamical systems were studied marginally in
theory and applications in control systems until in the last decade of the twentieth century
Oustaloup proposed the application of fractional order controllers in dynamic systems and
in this way the controller CRONE was developed demonstrating a superiority against the
conventional PID [18,29,30]. Later Podlubny proposed the fractional order PID controller
model, also showing the advantages over the ordinary PID [5,6]. On the other hand, there
are two more controllers that represent also non-integer controllers, these are the TID
controller (Tilt-Integral-Derivative) and the fractional lead-lag compensator [2,18].

It is possible to generalize the PID controller from Figure 2.2 (b), to the fractional order
PIλDµ controller shown in Fig. 2.2(b) [5,6]. This controller realizes integral and derivative
actions of orders λ ∈ R+ and µ ∈ R+ , to the signal error e(t), in addition to the proportional
action, which is defined by the integral-differential equation

u(t) = Pe(t) + IDλt e(t) + DDµt e(t), (λ, µ > 0) 2.7

which corresponds to the transfer function

C(s) =
U (s)
E(s)

= P +
I

sλ
+ Dsµ 2.8

where P denotes the proportional gain, I the integral gain, and D the derivative gain. As
mentioned above, the PIλDµ controller has better performance than the PID one because
the former has five parameters (P, I, D, λ, µ) that allows us to establish five design
restrictions that will been explained in Section 2.5.1. These parameters can be tuned in
the frequency domain, as shown in [9, 31]. In this work we discuss current methods to
approach fractances in the realization of analog PIλDµ controllers.

For the case λ=µ=1 we have the traditional PID, if λ=1 y µ=0 this is the PI variant of the
controller and if λ=0 with µ=1 a typical PD controller is obtained, that is, the latter two are
particular cases of the general controller. This allows to deduce that the variation of the
parameters λ and µ will give greater flexibility to the adjustment of the dynamic properties
of the fractional control system. Figure 2.3 illustrates some variants corresponding to the
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Figure 2.3: Plain λ − µ where the exponent of the fractional operator is located.

classical PID controller as a subset of the coordinate system, where there is an infinite
number of pairs leading to different specifications in the controller response.

2.5 Tuning or adjustment methods

Once the transfer function or model in the frequency domain of the fractional controller
is known, it is necessary to specify design methods to meet the control objective. The
classical methods for tuning the integer PID have not been discarded at all, for example,
the influence that the Ziegler-Nichols method has had on the design of the traditional
PID, although to a lesser extent, is still present for the case PIλDµ despite the existence
of more refined methods [27].

The Ziegler-Nichols method is empirical, based on the simulation of a large number
of cases and abridged to two rules [27, 32], one applicable to the plant response over
time and the other observing the frequency response. The first rule establishes that for a
unit step input two parameters of the plant in open loop are measured: the delay time L
and the time constant T, knowing both of them is determined by means of a table which
values have to take the parameters of the controller, KP , TI and TD.The second rule states
that nullifying terms TI and TD of the controller and establishing a feedback loop, KP will
be increased from 0 to a critical value Kc where the system response begins to oscillate,
measuring the period Pc of sustained oscillations, again these two parameters allow us
to determine which values have to take each parameter of the controller, KP , TI and TD

through its corresponding table [27,33].

In the case of PIλDµ similar processes are used, the simplest is to arbitrarily propose
the values of the two additional parameters to the integer-order PID, e.g. λ=µ=0.5 [6,
18], this method clearly misses the adjustment of the two degrees of freedom that a
design practice can lead to a better performance of the new controller. Another more
elaborated method specifies a requirement in the frequency domain, the phase margin
φpm , then it gets the terms KP , KI through the Ziegler-Nichols method plus solving a pair
of simultaneous equations and using the method of Astrom-Hagglung the value KD is
proposed, finally, two simultaneous equations involving KP , KI y KD bring the remaining
two parameters [13]. Another one [34], tunes the traditional PID out from the parameters
used by excellence in determining the stability of a system in the frequency domain: the
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Method Includes Advantages Disadvantages

Rule-based Z-N kind (2-DOF) Previous known method Non optimal tuning

[11,36]

Analytical PM - GM Medium-high accuracy Previous model knowledge

Flat phase Complex

[9,10,13–15,36,43,44] IMC

Dominant poles

F-MIGO

PM - GM - robustness

Numerical GA High accuracy Computationally expensive

[3,40,40–42,45–48] PSO Very complex

Fuzzy

ANN

Table 2.3: Comparison of the fractional PID tuning techniques.

phase margin φpm and the gain margin Kg, used to find numerically λ y µ. Within the
analytical tuning methods used for the integer PID, the method λ, useful in systems with
lengthy dead time L, the method of Haalman or the IMC (internal mode controller) which
cancels transfer function poles and is an extension of Smith’s predictor [27]. For the
case of pole location, the Cohen-Coon method is used to place the dominant poles of the
system at will [27,35].

Finally, optimization techniques are valid also for tuning purpose and its use has
been extended [1,36], is based on the specification of parameters expressed as function
inequalities where the most important or significant specification is chosen as the function
to be optimized. The algorithms that determine when the expected value has been reached
are evaluated by means of a gradient: ISE, IAE, ITAE, ITSE [37].

There are three possible ways to optimize parameter values KP , KI , λ, KD y µ of the
controller, one is optimizing gains KP , KI y KD, another is to optimize only the orders λ y
µ or all, simultaneously [38].

In the past decade few papers tackle the problem of fractional PID tuning but there
was a clear tendency to solve it using optimization techniques, Monje et al and Biswas
were representative examples of the use of mixed approaches, analytical plus numeric [9].

Since 2010, there are more works on artificial neural networks (ANN), particle swarm
optimization (PSO), genetic algorithms (GA) and fuzzy logic whose focus is on minimization
of a target function or, in general, optimization process [1, 3, 39–42]. Many works parts
from the frequency domain analysis, and a few from the time domain analysis.

2.5.1 Monje et al adjustment method

In a paper published in 2004, 5 performance specifications are proposed in the fre-
quency domain to obtain the 5 unknown parameters of the fractional controller or, in
other words, tune the controller. The conditions are as follows [9]:
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1. Phase margin
|C(jωcg)G(jωcg)|ωcg= 1

2
rad
s

= 0dB 2.9

2. Gain margin
arg(C(jωcg)G(jωcg)) = −π + φm 2.10

3. High frequencies rejection noise

|T (jω)| =
|C(jω)G(jω)|
|C(jω)G(jω) + 1|

≤ AdB, ω ≥ ωt
rad

s
2.11

4. Output disturbances rejection

|S(jω)| =
1

|C(jω)G(jω) + 1|
≤ BdB, ω ≤ ωs

rad

s
2.12

5. Robustness to variations in the plant gain

d[arg(C(jω)G(jω))]
dω ω=ωcg

= 0 2.13

The solution of the simultaneous equations corresponding to this set of conditions is not a
trivial problem, non-linear optimization techniques are used, which can be handled using
computational tools.

2.5.2 Radial-based neural networks

Within the control paradigms we can find cascade control, feedforward control, model
following among others and, in intelligent control there are genetic algorithms, particle
swarm optimization, fuzzy control and neural networks. Genetic algorithms (GA) as well
as particle swarm optimization (PSO) are similar in the sense that they look for minimal
of a function that can have several local minimums. Artificial neural networks have in
common with fuzzy logic that they are nonlinear methods to approximate functions [27].

A neural network with radial base function node (RBF) is conceptually very simple but
an intrinsically powerful structure. A function is radially symmetric if its output depends
on the distance of the input sample to convert the vector pattern into a scalar. Then
it figures global approximations to functions using function combinations centered on
weight vectors. It has been shown that RBF networks are universal estimators, so an
RBF network with a sufficiently large number of nodes can approximate any continuous
function of multiple variables into a compact set of data [1]. They can be applied effi-
ciently to the domains of discrimination problems (such as voice verification), time series
prediction (such as modeling in economics), and the extraction of features or even topo-
graphical maps. Figure 2.4 shows some examples of radial basis functions in the space
of one dimension.

Figure 2.5 shows the architecture of the neural network. The input layer is simply a
fan layer and does not perform any processing. The second layer performs a non-linear
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Figure 2.4: Example of radial basis functions.

Figure 2.5: Architecture of a neural network with a hidden layer.

mapping from the input space to the output through the activation of the radial functions.

Several types of non-linear functions can be used, but the typical is Gaussian given
the usefulness and because plenty of concepts that inspired these networks come from
classic statistical techniques of pattern recognition [?,49]. The following equation defines
a radial basis function for each neuron of the intermediate, hidden layer

φ(‖x −m‖) = exp[−
‖x −m‖2

2σ2 ] 2.14

The number of hidden neurons affects how well the network is able to separate the data.
A large number of hidden neurons will ensure correct learning, and the network is able to
correctly predict the data with which it has been trained. With very few hidden neurons,
the network may be unable to learn the relationships between the data and the error may
be more than the suitable level. Therefore, selecting the number of hidden neurons is a
crucial decision. With respect to the position of the centers or nodes, these can be kept
fixed and equidistant or randomly placed.

To facilitate the modeling and design of fractional controllers it has been developed
a set of tools or complementary tools (toolboxes) which help to simplify the necessary
calculations. Three are representative for these effects, the first is CRONE [50] which
includes design strategies through MATLAB and Simulink [51], the second is Ninteger [52]
that helps in development and performance evaluation with MATLAB programs and the
third is FOMCON [38,53] which is also a toolbox for MATLAB; FOPID pursues the same
goal but has not been yet highlighted by its impact or utility.
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3.1 Introduction

Proportional-Integral-Derivative (PID) controllers are the control strategies most used
in today’s industry. As shown in Fig. 2.2(a), this control strategy applies three actions
(proportional, integral and derivative, with gains P, I and D, respectively) to a signal error
e(t)=r(t)−c(t) between the reference r(t) and the signal being controlled c(t). Typically,
during the design stage the plant is modeled by its transfer function with integer orders
q on the Laplace frequency sq. However, experimental evidences show that physical
systems can be modeled with higher accuracy using fractional order transfer functions
[18], [20], [54]. On this direction, it is known that a fractional order PIλDµ controller has
better performance than the integer ones [18], [55], [56]. That is due to the addition of
two degrees of freedom: one given by the integral action λ ∈ R+, and the second by the
derivative action µ ∈ R+ [18]. This allows us to include up to five design restrictions to
the system response, namely: phase margin, gain margin, rejection to perturbations at
the output, high-frequency noise rejection and robustness to variations in the gain of the
plant [1], [57], [58], [38]. However, although fractional calculus has been studied from
Leibniz in 1965, its practical use has been restricted.

It was not until the development of new computing environments and numerical cal-
culus (e.g. MATLAB) when researchers introduced this theory to the modeling and control
of systems [18], [38], [53], [43]. That way, in 1999 Podlubny proposed the first fractional
controller [5]. Up to now one can find several realizations [54]- [36]. In addition, re-
searchers have developed rules for parameters’ syntonization, some of them considering
Ziegler-Nichols rules [11], [59], [13] optimization methods [53], [19], techniques in the fre-
quency domain [11], [60], [61], which offer robustness to the controller facing parametric
uncertainties of the process and presence of external perturbations [57]; or also in tech-
niques for intelligent computing, such as: neural networks [1], genetic algorithms [62], or
fuzzy logic [41], [40]. In general, these techniques can be classified as analytical, numeric
or rules-based ones. A summary of them is given in [63], [19], [36]. Unfortunately, the
fractional order PID controller has not been appreciated by the industry as it is in the
academia [18]. This is due to the implicit difficulties on the implementation in either
digital or analog domains. In the analog case, the difficulties are accomplishing the de-
sign of circuit elements with frequency responses of the form s−λ or sµ that are named
“fractances".

The fractances are circuit elements with constant phase response at all frequencies [7].
For instance, very few physical realizations have been reported related to “fractal capaci-
tances" [25], [23]. Unfortunately, those elements are bulky, require chemical compounds
with difficult manipulation and the order λ cannot be modified easily. As alternatives,
there exist approximations with rational functions in s for the operators s−λ or sµ, that are
obtained from Carlson methods, Matsuda, Oustaloup and from the continuous fractions
expansion (CFE) [18], [6]. The resulting functions are implemented with arrays of resis-
tances, capacitors and inductors in ladder networks of Cauer, Foster, and others [6]. The
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drawback of these realizations is the difficulty to approximate the required values with
the ones of the commercially-available resistances and capacitors [26], in addition they
can require negative impedance converters [6], [22] or inductors [64]. Another important
issue is that digital PIλDµ controllers [55] are not an option for controlling processes that
change abruptly, as the case of vibrations [6].

From the difficulties on the implementations mentioned above, we propose two al-
ternatives for the circuital realization of analog approximations for fractional derivatives
and integrals, with the main advantage of using integrators of integer order, differential
amplifiers, two-inputs adder amplifier, or from lead-lag networks. Most important is that
the resulting circuits can be easily implemented with commercially-available resistances
and capacitors and avoiding the use of negative impedance converters or inductors. In
addition, the orders of the fractional derivative and integral can be modified just varying
the gain of the differential amplifiers and adders, thus reducing design complexity. To
validate the proposals we present simulation results using MATLAB and HSPICE, of a
system with controllers Proportional-Integral (PI ) and PID, both of fractional order, and
a plant modeled as a system of order one plus dead time. The system is verified ex-
perimentally from a realization using operational amplifiers (OpAmps) uA741 and using
an Application Specific Integrated Circuit (ASIC) that is known as Field-programmable
Analog Array (FPAA) AN231E04 from Anadigm [65]. In this manner, the manuscript is
organized as follows: Sect. 2 details the theory and introduces the concepts of fractional
order derivative and integral, fractional order transfer function and the fractional order
PID controller. Section 3 introduces our proposal as two alternatives for implementing
the fractional derivative and integral. Section 4 describes the design of a system with PI
and PID controllers of fractional order and two realizations are given by using OpAmps
and an FPAA. Section 5 compares simulation and experimental results with a realization
using Cauer networks. Finally, Sect. 3.5 lists the conclusions.

3.2 Proposal of implementation of fractional operators of Laplace

As mentioned before, the operators sα and s−α cannot be implemented directly, it is
required to perform approximations. For instance, the approximation of order one with α
∈ (0,1) obtained by CFE method has the form [7]

1
sα
≈

(1 − α)s + (1 + α)
(1 + α)s + (1 − α)

=
As + 1
s + A

, A =
1 − α
1 + α

3.1

sα ≈
(1 + α)s + (1 − α)
(1 − α)s + (1 + α)

=
Bs + 1
s + B

, B =
1 + α

1 − α
3.2

while the approximation of order two results in [7]

1
sα

≈
(α2 − 3α + 2)s2 + (8 − 2α2)s + (α2 + 3α + 2)
(α2 + 3α + 2)s2 + (8 − 2α2)s + (α2 − 3α + 2)

=
Ds2 + Cs + 1
s2 + Cs + D

3.3
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3.2 Proposal of implementation of fractional operators of Laplace

sα ≈
(α2 + 3α + 2)s2 + (8 − 2α2)s + (α2 − 3α + 2)
(α2 − 3α + 2)s2 + (8 − 2α2)s + (α2 + 3α + 2)

=
Fs2 + Es + 1
s2 + Es + F

3.4

with

C =
8 − 2α2

α2 + 3α + 2
, D =

α2 − 3α + 2
α2 + 3α + 2

E =
8 − 2α2

α2 − 3α + 2
, F =

α2 + 3α + 2
α2 − 3α + 2

3.5

From (3.1)–(3.5) we introduce two proposals of implementation for the operators sα

and s−α.

3.2.1 Proposal of implementation 1

In this approach, the operators sα and s−α are implemented with integrators of integer
order from CFE approximations of orders one and two. Besides, it can be generalized
for approximations of higher order. Let (3.2) be the approximation of order one of the
fractional derivative. The following transfer function is given

Vo(s)
Vi(s)

= sα ≈
Bs + 1
s + B

3.6

where Vi and Vo are the input and output voltages of the fractional derivative. Algebraic
manipulation on (3.6) leads to

Vo(s)(s + B) = Vi(s)(Bs + 1) 3.7

and after dividing both sides of (3.7) by s and regrouping similar terms, it results in

Vo(s) =
Vi(s) − BVo(s)

s
+ BVi(s) 3.8

According to (3.8), the fractional derivative can be implemented from the block diagram
shown in Fig. 3.1(a), by selecting gain blocks B. The realization using OpAmps is shown
in Fig. 3.1(b). Circuit analysis to this circuit corresponds to the transfer function given by
(3.6). The required design blocks are: differential amplifier with pondered gains (ADP) of
value 1 and B, an adder with pondered gain (ASP), also of values 1 and B, and an inverter
integrator (IInv). To tune the design, Ch is used as degree of freedom and it is chosen
R=C−1

h , while resistors of value B−1R are calculated with (3.2) for the desired order α. It is
also possible to perform frequency denormalization by selecting a new value for Ch , equal
to ChOmega to visit cut-off frequencies in (3.6) by a factor Ω.

Following these design procedures, this subsection introduces the implementation of
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Chapter 3. Analog design of a fractional PID controller

Figure 3.1: (a) Block diagram of the proposal of implementation 1 of the fractional order
derivator and integrator with a first order approximation; (b) Circuit realization.

the fractional order integrator from (3.1) and the transfer function

Vo(s)
Vi(s)

=
1
sα
≈
As + 1
s + A

3.9

Algebraic manipulation to (3.9) results in

Vo(s) =
Vi(s) − AVo(s)

s
+ AVi(s) 3.10

and the fractional integrator is obtained from the block diagram shown in Fig. ??(a),
and selecting gain blocks A. The implementation using OpAmps is shown in Fig. ??(b),
the resistances have values A−1R, with Ch as degree of freedom and R=C−1

h . It is worth
mentioning that the fractional integrator is directly obtained from the fractional derivator
by substituting B by A in (3.2), choosing A in Fig. 3.1(a) and substituting B−1 by A−1

in Fig. 3.1(b). Again, a frequency denormalization can be performed by substituting Ch
by ChOmega. For the approximations of second order (3.3) and (3.4) the same procedure
can be applied to obtain, respectively

Vo(s) =
(Vi − VoC)

s
+

(Vi − DVo)
s2 + DVi 3.11

Vo(s) =
(Vi − VoE)

s
+

(Vi − FVo)
s2 + FVi 3.12

these expressions can be realized with circuit elements from the block diagram shown in
Fig. ??. This procedure can be generalized for any approximation of order n of sα and
s−α. A detailed study for selecting approximations of different order can be found in [7].
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3.3 Analog realization of the PIλDµ controller

Figure 3.2: Block diagram of the proposal of implementation 1 of the fractional order
derivator and integrator with a second order approximation.

3.2.2 Proposal of implementation 2

It is possible to obtain a more compact realization than that shown in Fig. 3.1(b),
for approximations of order one of sα and s−α. To do that, this subsection proposes
performing an adequate selection of the capacitors and resistances of the lead-lag network
in Fig. 3.3. Circuit analysis is applied to obtain the transfer functions given by (3.1) and
(3.2). Letting Ch as degree of freedom one can evaluate resistance values from B and A.
A frequency denormalization can be performed by substituting Ch by ChOmega.

3.3 Analog realization of the PIλDµ controller

To validate the proposed circuit realizations for the Laplace operators of fractional
order, this section reproduces the PIλDµ controller and the system of order one plus dead
time given in [1]. The plant G(s) is modeled by

G(s) =
K

1 + sT
e−Ls ≈

( K

1 + sT

) 
1 −

L

2
s

1 +
L

2
s


=

K

1 + sT
e−0.1s ≈

( K

1 + sT

) (1 − 0.05s
1 + 0.05s

)
3.13

where T=1, L=0.1 y K={0.125,0.25,0.5,1,2,4,8} to evaluate the effect of variations in the
gain of the plant. The dead time is modeled with an all-pass filter. The PIλDµ controller
has the form

C(s) = P + Isλ + Dsµ

= 0.7469 + 0.874s1.2089 + 0.0001s0.0603 3.14

where P=0.7469, I=0.874, D=0.0001, λ=1.2089 and µ=0.0603 were computed in [?] to
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Chapter 3. Analog design of a fractional PID controller

Figure 3.3: Proposal of implementation 2 of the fractional order derivator and integrator
with a first order approximation.

satisfy the following design constraints:

• Zero crossing frequency ωcg=0.5rad/s with∣∣∣C(jωcg)G(jωcg)
∣∣∣
dB

= 0dB 3.15

• Phase margin φm=38.2o where

arg
(
C(jωcg)G(jωcg)

)
= −π + φm 3.16

• High-frequency noise rejection Ax=−10dB for frequencies ω≥ωt=10rad/s, where∣∣∣∣∣∣T (jω) =
C(jωcg)G(jωcg)

1 + C(jωcg)G(jωcg)

∣∣∣∣∣∣
dB

≤ AxdB

∀ω ≥ ωt ⇒ |T (jωt)|dB = AxdB 3.17

• Rejection to perturbations at the output Bx=−20dB for frequencies ω≤ωs=0.01rad/s,
where ∣∣∣∣∣∣S(jω) =

1
1 + C(jωcg)G(jωcg)

∣∣∣∣∣∣
dB

≤ BxdB

∀ω ≤ ωs ⇒ |S(jωt)|dB = BxdB 3.18

• Robustness to variations in the gain of the plant.

d
[
arg

{
C(jωcg)G(jωcg)

}]
dω

∣∣∣∣∣∣∣∣
ω=ωcg

= 0 3.19

3.3.1 Realization with the proposal of implementation 2

Figure 3.4 shows the circuit realization of the closed-loop system given in Fig. 2.2(b),
with plant (3.13) and control (3.14), this last designed with the lead-lag network in Fig. 3.3

46



3.3 Analog realization of the PIλDµ controller

Figure 3.4: Plant and PIλDµ controller designed with the proposal of implementation 2.

to approximate operators sλ and s−µ. The controller requires 8 OpAmps, 5 capacitors and
17 resistances. To model the plant and comparator it requires 3 OpAmps, 2 capacitors
and 9 resistances. The transfer function and the details of the design of every functional
block of the circuit are listed in Table 3.1. The OpAmp labeled 1 and its four resistances
R correspond to the comparator of the reference signal r(t)=Vin(t) and the signal being
controlled c(t)=Vout(t). The output of this OpAmp is the error e(t)=Vin(t)−Vout(t). The
OpAmps labeled 2 and 3 form the fractional order integrator. Note that with respect to
the circuit in Fig. 3.3, the resistance of value 1/Ch has been substituted by a capacitor
of value Ch to incorporate an additional integrator of order one. This is due to the fact
that λ=1.2089 and the approximation (3.1) is only valid for λ ∈ (0,1). That way, the
fractional integrator associated to OpAmp 2 is designed to λ̂=λ−1=0.2089. On the other
hand, the fractional derivator is realized with OpAmps 4 and 5, as shown in Fig. 3.3.
The OpAmps 6, 7 and 8 in inverter connection set the integral gain I, derivative gain D,
and proportional gain P, respectively. In addition, OpAmp 6 adds a gain factor A after
substituting the resistance 1/Ch by the capacitor value Ch in the fractional integrator.
The OpAmp 9 sum the three control actions and apply them to the plant, OpAmp 10
models a low-pass filter in series with an all-pass filter implemented with OpAmp 11. The
design methodology is summarized as follows:

1. Choose the degree of freedom Ch=0.1mF and evaluate R=C−1
h =10KΩ.

2. Evaluate A=0.6543 and B=1.1283 from (3.1) and (3.2) for λ=0.2089 and µ=0.0603,
respectively.

3. Given A, B, Ch , R, P, I, D, L and K, evaluate the remaining resistances from the
values in Fig. 3.4.

4. The resistances with non-commercial values are approximated with series or parallel
connections.
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Chapter 3. Analog design of a fractional PID controller

Table 3.1: Design details of the PIλDµ control of Fig. 3.4 with Ch=0.1mF and Ω=6283.2.

Amp Operation Transfer Element Theoretical Employed
function value value

1 Comparator Vo=Vin−Vout R 10KΩ 10KΩ

2
Fractional

−
1
A

( As + 1
s + A

) A/Ch 6.54KΩ 6.6KΩ∗

integrator 1/(ACh ) 15.29KΩ 15.33KΩ∗

Ch/Ω 15nF 15nF

3 Integer
−

1
s

R 10KΩ 10KΩ

integrator Ch/Ω 15nF 15nF

4
Fractional

−
1
B

( Bs + 1
s + B

) B/Ch 11.28KΩ 11.2KΩ∗

derivator 1/(BCh ) 8.86KΩ 8.9KΩ∗

Ch/Ω 15nF 15nF

5 Inverter
B

1/(BCh ) 8.86KΩ 8.9KΩ∗

amplifier 1/Ch 10KΩ 10KΩ

6 Integral AI R 10KΩ 10KΩ

gain ARI 5.75KΩ 5.75KΩ∗

7 Derivative D 100R 1MΩ 1MΩ

gain 100RD 100Ω 100Ω

8 Proportional P R 10KΩ 10KΩ

gain RP 7.46KΩ 7.4KΩ

9 Adder Vo=V1+V2+V3 R 10KΩ 10KΩ

10
Plant

K

1 + sT

R 10KΩ 10KΩ

(lowpass R/K
10KΩ

K
∗∗∗

filter) Ch/Ω 15nF 15nF

11
Plant 1 −

L

2
s

1 +
L

2
s

R 10KΩ 10KΩ

(allpass L/(2Ch ) 500Ω 500Ω∗∗

filter) Ch/Ω 15nF 15nF

* Two resistors connected in series. ** Two resistors connected in parallel.

*** Array of resistors of 10KΩ

5. A frequency denormalization can be performed. For reducing the size of the capac-
itors to facilitate experimental measurements, one chooses Ω=6283.2, resulting in
Ch=15nF .

3.3.2 Realization of the proposal of implementation 1

Figure 3.5 shows the circuit for realizing the system in Fig. 2.2(b), with plant (3.13),
control (3.14), and with operators sλ and s−µ, implemented from Fig. 3.1(b). With respect
to the circuit in Fig. 3.4, only both the fractional integrator and derivator were modified,
so that all the elements associated to OpAmps 1, 7, 8, 9, 10 and 11 have the same values
listed in Table 3.1.

The transfer functions of all blocks of this circuit and design details are listed in
Tables 3.1 and 3.2. Again, an integrator was added to fullfill λ=1.2089. In this case the
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3.3 Analog realization of the PIλDµ controller

Figure 3.5: Plant and PIλDµ controller designed with the proposal of implementation 1 of
first order.

Table 3.2: Design details of the PIλDµ control of Fig. 3.5 with Ch=0.1mF and Ω=6283.2.

Operation Transfer Element Theoretical Employed
function value value

Fractional
As + 1
s + A

1/(AR) 15.27KΩ 15.27KΩ∗

integrator R 10KΩ 10KΩ

Ch/Ω 15nF 15nF

Non-inverter 1
s

2/Ch 20KΩ 20KΩ∗

integrator Ch/Ω 15nF 15nF

Fractional
Bs + 1
s + B

1/(BR) 8.9KΩ 8.88KΩ∗

derivator R 10KΩ 10KΩ

Ch/Ω 15nF 15nF

A6
I

R 10KΩ 10KΩ

RI 8.74KΩ 8.76KΩ∗

* Two resistors connected in series. A1, A7-A11 as in Table 3.1

fractional integrator was designed for λ̂=0.2089, and a non-inverting integrator was added
by OpAmp 12, capacitor Ch , and resistances of value 2/Ch . To accomplish A=0.6543,
B=1.1283 and Ch=0.1mF , the resistances of the fractional integrator and derivator were
evaluated as in Fig. 3.1(b). In addition, frequency denormalization was performed with
Ω=6283.2, obtaining Ch=15nF . Also, non-commercial resistances were approximated
using combinations of commercial ones. The control requires 11 OpAmps, 3 capacitors
and 40 resistances.
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Chapter 3. Analog design of a fractional PID controller

Figure 3.6: Plant and PIλ controller designed in a FPAA and the corresponding experimental
setup.

3.3.3 Realization with Field Programmable Analog Arrays

Field Programmable Analog Arrays (FPAAs) are processors for analog signals, equiv-
alents to the digital processors FPGAs (Field Programmable Gate Arrays). FPAAs are
devices of specific purpose with the characteristics of being reconfigurable electrically.
They are used to implement a variety of analog functions, such as: integration, deriva-
tion, pondered sum/subtraction, filtering, rectification, comparator, multiplication, di-
vision, analog-digital conversion, voltage references, signal conditioning, amplification,
nonlinear functions, generation of arbitrary signals, among others. Since FPAAs are re-
configurable, one can implement complex prototypes in a short time. In this work the
FPAA AN231E04 from Anadigm [?], is used. It uses technology of switched capacitors and
it is organized into four configurable analog blocks (CABs). Those CABs are distributed
in a matrix of size 2x2, supported by resources of programmable interconnections, seven
configurable analog cells of input-output with active elements for amplification and dy-
namic reduction of offset and noise, an on-chip generator of multiple non-overlapped
clock-signals and internal voltage references to eliminate temperature effects. It also
includes a look-up table (LTU) of 8x256 bits for function synthesis and nonlinear sig-
nals, and for analog-digital conversion. The configuration data is saved into an internal
SRAM, which allows reprogramming the device without interrupting its operation. The
circuits are designed using the software Anadigmdesigner2, in which the user has access
to a library of functional circuits CAMs (Configurable Analog Modules). Those CAMs are
mapped in a portion for each CAB. The CABs has matrices of switches and capacitors,
two OpAmps, a comparator, and digital logic for programming.

Figure 3.6 shows an implementation using FPAA AN231E04, equivalet to the circuit
in Fig. 3.4, but avoiding the fractional derivator and its gain (OpAmp 7). Then, it uses the
same plant and now controlled by a fractional PI. As shown in the following section, that
control presents an almost identical performance to the fractional PID due to the fact that
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3.4 Results

Table 3.3: Details of the design in FPAA of a PIλ control with Ω=6283.2.

Operation CAM Transfer Characteristics
function

Comparator SumDiff
Vo=Vin−Vout

G1=1

(Sum/Difference) G2=-1

Fractional Filter Bilinear 1

−

A

(
s +

Ω

A

)
s + AΩ

G=A=0.655

integrator (lag-lead function) Fp= AΩ
2π =0.655KHz

Fz= Ω
2πA =1.526KHz

Integrator Ω
s Kint1=Ω=0.006/µs

Gains SumInv
G1V1 − G2V2

G1=−I=−0.875

P, I (Inverter Adder) G2=−P=−0.745

Plant Filter Bilinear 2
Ω

s + Ω
G=1

(lowpass filter) Fc=
Ω

2πT =1KHz

Filter Bilinear 3

2Ω

L
− s

2Ω

L
+ s

Fc=
2Ω
2πL =20KHz

(allpass filter)

Gain Hold −K G=(0.25,0.5,1,2)

Gi : gain at the i-th input of the CAM. F : corner frequency of the CAM
Kint : integration constant of the CAM

D=0.0001 and µ=0.0603 are low values compared to P=0.7469, I=0.874 and λ=1.2089.
Details of the design and the transfer functions of every block are listed in Table 3.3.
The comparator producing the signal error e(t)=Vin(t)−Vout(t) is implemented using a
CAM “SumDiff" (adder-subtractor) configured with gains 1 and −1 at each input. The
fractional integrator of order λ=0.2089 is implemented by CAM “FilterBilinear 1" (Bilineal
filter) and designed to produce a transfer function with one pole and zero given by (3.1).
In series with this CAM, an “integrator" CAM is given to complete the order λ=1.2089.
The CAM “SumInv" sum the actions integral and proporcional, previously multiplied by
P=0.7469 and I=0.874, according to (3.14). The plant is composed by a low-pass filter
(CAM “Bilinear Filter 2"), an all-pass filter (CAM “Bilinear Filter 3"), and a gain block (CAM
“Gain Hold") to adjust K. The frequency denormalization was performed with Ω=6283.2.

3.4 Results

To validate the proposals of implementation, this section presents both simulation
and experimental results for the circuits in Fig. 3.4, Fig. 3.5, and Fig. 3.6. In addition, a
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Chapter 3. Analog design of a fractional PID controller

Figure 3.7: (a) MATLAB simulation results reported in [?] for K=(0.125,0.25,0.5,1,2,4,8).
(b) MATLAB/Simulink simulation of the system 3.13 with the PIλDµ controller realized by
means of the first implementation and K=(0.25,0.5,1,2,4,8). (c) HSPICE simulation of the
circuit of Fig. 3.5 with K=(0.25,0.5,1,2,4,8).

realization applying CFE technique is given for comparison purposes.

3.4.1 Simulink and HSPICE simulation with proposal of implementation 1

The system in Fig. 2.2(b) was simulated using Simulink with plant (3.13), control
(3.14), Ω=6283.2 and the operators s−λ and sµ, realized from Fig. ??(a). The same
system was simulated in HSPICE from Fig. ??, for which the details of design are listed
in Tables ?? and 3.2, and using the OpAmp uA741. Figure 3.7(a) reproduces the reported
results in Fig. 3.2(a) in [?], while Fig. 3.7(b) and Fig. 3.7(c) show results by using MATLAB
and HSPICE, respectively. Table ?? summarizes these results for K=(0.25,0.5,1,2,4,8),
an step-input of 1V , offset=0.5V , and for a frequency of 100Hz. It can be observed
that Fig. 3.7(b) and Fig. 3.7(c) show good agreement with the results given in [1], with
exception of the cases when K=0.125 and K=0.25. This inconsistency is attributed to
Padé approximation for the dead time rather that our proposal of implementation, in fact,
the realization using Cauer networks shows a similar behavior. The remaining results
demonstrate the validity of our proposal of implementation 1, with a maximum difference
of 2.4% in the overshoot, and of 0.2ms in the settling time from 10% to 90%, with respect
to the results given in [1] for K>0.5. An important issue is that, although the variations
in K the overshoot remained narrow between 5.8% and 14% for K>0.5, thus confirming
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3.4 Results

Figure 3.8: Experimental setup of the system (3.13) with the PIλDµ controller of Fig. 3.4.

Table 3.4: Results comparison

K=0.125 K=0.25 K=0.5 K=1 K=2 K=4 K=8

Realization Mp ts Mp ts Mp ts Mp ts Mp ts Mp ts Mp ts

Ref [?]1 8% 1.46ms 11.2% 0.86ms 12.9% 0.52ms 14.23% 0.29ms 11.29% 0.17ms 7.3% 0.07ms 8.1% 0.021ms

Fig. 2.2(b) and 3.1(a)2 — — 4.11% 0.54ms 10.9% 0.32ms 14% 0.2ms 12.3% 0.11ms 7.9% 0.052ms 5.8% 0.017ms

Fig. 3.53 — — 3.4% 0.82ms 10.5% 0.48ms 13.9% 0.29ms 12.3% 0.17ms 8% 0.081ms 6.1% 0.026ms

Fig. 3.5 and PI control4 — — 3.4% 0.81ms 10.5% 0.48ms 13.8% 0.29ms 12.3% 0.16ms 8% 0.08ms 5% 0.026ms

Fig. 3.45 4% 1.41ms 5.7% 0.99ms 9% 0.61ms 11.3% 0.36ms 10.5% 0.2ms 7.1% 0.094ms 8.2% 0.028ms

Fig. 3.66 — — 1.7% 0.46ms 11.4% 0.58ms 15% 0.431ms 10.4% 0.36ms — — — —

Fig. 3.127 — — 11.2% 0.82ms 13.46% 0.49ms 13.19% 0.29ms 10.9% 0.16ms 7.5% 0.082ms 4.5% 0.026ms

1Matlab simulation. 2Matlab simulation, 1st implementation. 3HSPICE simulation, 1st implementation. 4HSPICE simulation, PI control.
5Experimental results, 2nd implementation. 6Experimental results, 2nd implementation (FPAA). 7HSPICE simulation.

the very low sensitivity to variations in K while satisfying (3.19).

3.4.2 Experimental validation with OpAmps and proposal of implementa-

tion 2

The system in Fig. 2.2(b) was implemented on protoboard with plant (3.13), control
PIλDµ (3.14), Ω=6283.2, and operators s−λ and sµ, realized with OpAmps uA741 from Fig.
3.4 and the design details listed in Table 3.1. The experimental configuration is shown
in Fig. 3.8, which consists of an input square signal of 1V in amplitude, offset=0.5V ,
and frequency of 100Hz, supplied from the experimental platform ELVIS II from National
Instruments. This device also provides bias voltages of ±15V to the OpAmps. The output
is measured with an Oscilloscope HD4096 Teledyne Lecroy. Figure 3.9 and Fig. 3.10 show
the results for K=(0.125,0.25,0.5,1) and K=(2,4,8), respectively. Table 3.4 summarizes
these results. The gains K were adjusted with arrays of resistances of 10KΩ.

It can be noted that the simulations results in Fig. ??, and the experimental ones
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Chapter 3. Analog design of a fractional PID controller

Figure 3.9: Experimental results with the second implementation for
K=(0.125,0.25,0.5,1).

Figure 3.10: Experimental results with the second implementation for K=(2,4,8).

in Fig. 3.9 and Fig. 3.10 are in good agreement, thus validating our proposal of imple-
mentation 2. Also, there exists agreement with the settling time from 10% to 90%, which
is between 0.028ms and 1.41ms. The overshot behaves similar between 4% and 11%,
demonstrating again that this design has very low sensitivity to variations in the gain K.

3.4.3 Experimental validation with FPAA AN231E04

When the circuit in Fig. 3.5 was simulated in HSPICE, it was investigated the effect
of avoiding the effect of the derivative action. The corresponding results are summarized
in Table 3.4. As one sees, the results are quite similar to that of the PIλDµ controller.
Therefore, the implementation of the fractional PI was done using the FPAA AN231E04,
as described in Sect. 3.3.3. The experimental configuration of Fig. 3.6 has a differen-
tial input of 0.5V in amplitude and frequency 100Hz, and a common-mode component
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3.4 Results

Figure 3.11: Experimental results with the proposal implementation 2 in FPAA, for
K=(0.25,0.5,1,2) (PI control).

of 1.5V from the array of three OpAmps and target ELVIS II. The output is converted
from differential mode to simple mode with a differential amplifier. To compare the ob-
tained results with respect to previous realizations, the settling time was doubled to
compensate the input signal of 0.5V instead of 1V . This difference is imposed by the
input voltage range that the FPAA can drive without modifying the transfer functions of
the already designed blocks. The settling times of 10% to 90% are not accurate in this
case but allow performing the comparison. In this manner, the measurements were per-
formed with the Oscilloscope HD4096. Figure 3.11 and Table 3.4 summarize the results
for K=(0.25,0.5,1,2). As one sees, there is again a good agreement with the ones for
K>0.25, with an overshoot between 10.4% and 15%, and the rise time between 0.36ms
and 0.58ms. One can observe a gain error once the overshoot is attenuated, and this is
attributed to the gain error of the blocks in the FPAA instead of the steady state, which
must be zero due to the existence of integrators in the controller. Again the overshoot has
very low sensitivity to variations in the gain of the plant.

3.4.4 Simulation with PIλDµ control from Cauer networks

For comparison purposes, the system in Fig. 2.2(b) was simulated in HSPICE with
plant (3.13), control PIλDµ (3.14), Ω=6283.2, and operators s−λ and sµ substituted by the
approximations of order two (3.3) and (3.4), and implemented applying the first Cauer
method (Fig. 2.1). Figure 3.12 shows the resulting circuit, which was realized using the
design details listed in Table 3.5. One can appreciate that with respect to the circuit in
Fig. 3.4 only the fractional integrador and derivator were modified, so that all elements
associated to OpAmps 1, 3, 7, 8, 9, 10 and 11 remain with the same values in Table ??. In
the same manner as for the circuit in Fig. 3.5, the inverter amplifier realized with OpAmp
6 is conserved but with a new resistance ARI substituted by RI. Figure 3.13 shows the
HSPICE simulation with an amplitude input of 1V , offset=0.5V , and frequency of 100Hz.
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Figure 3.12: Plant and control system PIλDµ from continuous expansion of fractions and
Cauer networks.

Figure 3.13: HSPICE simulation of the circuit of Fig. 3.12 for K=(0.25,0.5,1,2,4,8).

The results are summarized in Table 3.4. Again, there exists good agreement with the
results of the other circuits, and in this case the results for K=0.25 are better approached
to the ones reported in [1]. The opposite occurs for K=8. In addition, this system looks
quite compact and simple than the ones proposed in Fig. 3.4 and Fig. 3.5, in this case
the fractional PID controller requires 7 OpAmps, 19 resistances and 5 capacitors.

3.4.5 Discussion

Table 3.6 presents a comparison among PID controllers in Figs. 3.4, 3.5 and 3.12, in
terms of the number of active and passive elements, and in terms on the design complex-
ity. It can be noted that the second proposal of implementation is the most compact since
it requires the less number of OpAmps and resistances. It just requires 6 additional re-
sistances to approximate the required ones with commercial values. It can be appreciated
also that for being degrees of freedom, the capacitors can always be implemented with
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Table 3.5: Design details of the PIλDµ control of Fig. 3.12 with Ch=0.1mF , Ω=6283.2
and a magnitude denormalization of 10,000 in the elements of the fractional integrator and
fractional derivator.

Operation Transfer Elemen Theoretical Employed

function value value

Fractional
D1s2 + C1s + 1
s2 + C1s + D1

R 10KΩ 10KΩ

integrator R1 5.3KΩ 5.38KΩ∗

R2 5.7KΩ 5.7KΩ∗

R3 8.33KΩ 8.32KΩ∗

C1 11.42nF 11nF∗

C2 88.3nF 90nF∗

Fractional
1

D2s2 + C2s + 1
s2 + C2s + D2

R 10KΩ 10KΩ

derivator R1 8.35KΩ 8.32KΩ∗

R2 52.36KΩ 51KΩ∗

R3 −24.5KΩ requiere NIC

C1 11.42nF 11nF∗

C2 -13nF requiere NIC

A6 (integral I R 10KΩ 10KΩ

gain) RI 8.74KΩ 8.76KΩ∗

∗Series combination of two resistors or two capacitors.
A1, A7-A11 as in Table 3.1.

commercial values. The second proposal of implementation requires the same number of
active elements as the one with Cauer networks, and only 3 capacitors, but the number
of resistances is considerable. This is due to the fact that 20 resistances were added to
approximate the required values. That number can be reduced to 12 by interchanging
the resistances of value R and A−1R (or B−1R) in Fig. 3.1(b), and if changing A−1 (B−1)
by A (B). On the other hand, the design of the controller with this proposal is more sim-
ple since one just needs to evaluate two resistances: A−1R and B−1R. The design with
Cauer networks is the most complicated one because it performs a continuous expan-
sion of fractions, and if necessary, it requires negative impedance converters. Another
difficulty is the lack of degrees of freedom, for which all resistances and capacitors will
be of non-commercial values. Finally, although the comparisons among the proposed
approximations are of order 1 and the design with Cauer networks is order 2, the results
listed in Table 3.4 show that there is not a notably difference among the realizations in
terms of the performance, thus concluding that the realizations of order 1 are pretty good
enough to realize fractional PID controllers.
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Table 3.6: Results comparison

OpAmps Resistors Capacitors NICs∗ Dificultad

R A Total R A Total R A Total Procedure Complexity

1st 8 0 8 17 6 23 5 0 5 0 Calculate A and B with (3.1) and (3.2) using λ and µ Low

proposal and substitute values in Figure 3.3

2nd 11 0 11 40 20 60 3 0 3 0 Calculate A and B with (3.1) and (3.2) using λ and µ Very low

proposal 12 52 and substitute values in Figure 3.1(b)

Cauer 7 4 11 19 15 34 5 3 8 2 Calculate C, D, E and F with (3.5) using λ and µ, High

perform the CFE decomposition and

find the equivalent Cauer network. If it is required

design the required NICs

Ref 4 0 4 12 (12, 24) (24, 36) 7 (7, 14) (14, 21) 0 Seven equations must be solved to obtain the values of High

[?] required resistors and capacitors.

fractional These elements are approximated with serial/parallel

PD connections of two or three elements of values

delivered in standard series

R: Number of required elements. A: Number of elements added because of NICs or to approximate non-commercial values of capacitance or resistance.
NIC: Negative Impedance Converter.

3.5 Conclusions

Two alternatives for the analog implementation of integrators and derivators of frac-
tional order have been introduced. They include implementations with lead-lag networks
or with differential amplifiers, adders and integrators of integer order. These proposals
were validated simulating (MATLAB and HSPICE) PI and PID controllers of fractional or-
der, and with their realizations using commercially available OpAmps and FPAAs. After
comparing the results with respect to an equivalent realization from Cauer networks, it
was appreciated that in addition to a reduction in the design process, also the number of
active and passive elements being reduced, and they have the advantage of including de-
grees of freedom that allow selecting circuit elements or commercial values. These advan-
tages could increase the use of fractional order PID controllers in industrial applications.
Most important is that our proposed implementations for fractional order integrators and
derivators can be extended to other applications like fractional order filters [66], chaotic
systems [67], or fractional memristors [68].
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4.1 Tuning by simultaneous non-linear optimization

The tuning of the five controller parameters Kp, Ki , λ, Kd and µ of the PIλDµ controller
presented in section 2.3 is directly associated to the plant parameters and the desired
performance of the system. In the procedure proposed by Monje et al [9] five simultane-
ous non linear inequalities with restrictions are developed in terms of the variables of
the controller (Kp, Ki , λ, Kd and µ), the plant (T and L) and the desired performance
established by means of the phase and gain margin, noise and disturbance rejection as
well as variations in the plant. It has been suggested in some publications [56, 69] to
use the computational optimization function FMINCON, which is installed on software
as MATLAB and SCILAB to perform the task of finding optimal values for each controller
parameter of the PIλDµ controller. It finds a constrained minimum of a scalar function of
several variables starting at an initial estimate. In such function must be stated all fea-
tures we have, including the target or main function, nonlinear conditions to be fulfilled in
the form of equations or inequalities, a set of lower and upper bounds of the independent
variables and the range of output values and initial conditions to optimize parameters [1]
.

Once it has been clearly defined the performance requirements and the plant model,
it can be used the toolbox of MATLAB called FOMCON [38, 53]. FOMCON is the result
of an interdisciplinary research project dedicated to the development and applications of
fractional calculus, its distribution and installation procedure is available from the project
page [70].

4.2 Design requirements of the system

Summarizing the conditions the system must meet, here is the 5 performance spec-
ifications: GM = 20dB, PM = 51.83◦ if ζ = 0.5 (or MP ' 16.3%), T (s) ≤ −10dB
∀ω ≥ ωt = 10rad/s, S(s) ≤ −20dB ∀ω ≤ ωs = 0.01rad/s and ωcg = 0.5rad/s.

1. Phase margin
|C(jωcg)G(jωcg)|ωcg= 1

2
rad
s

= 0dB 4.1

2. Gain margin

arg(C(jωcg)G(jωcg)) = −π +
2
3
rad

s
4.2

3. High frequencies rejection noise

|T (jω)| =
|C(jω)G(jω)|
|C(jω)G(jω) + 1|

≤ −10dB, ω ≥ 10
rad

s
4.3

4. Output disturbances rejection

|S(jω)| =
1

|C(jω)G(jω) + 1|
≤ −20dB, ω ≤

1
100

rad

s
4.4
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Figure 4.1: MATLAB variables of a fractional transfer function registered in the workspace.

5. Robustness to variations in the plant gain

d[arg(C(jω)G(jω))]
dω ω=ωcg

= 0 4.5

4.3 Tuning through FOMCON

This section illustrates the use of dialog boxes of FOMCON’s interface in order to tune
the fractional PID controller. The tuning procedure is listed below [71] :

1. State the plant model.

2. Find the stability conditions of the plant (maximum loop gain and permitted delay).

3. Assign the maximum of loop gain value to the upper bound of Kp.

4. Set the proposed ranges of the remaining four parameters and a value to start.

5. Fix the performance conditions of the system.

6. Choose the optimization algorithm.

7. Run the application.

8. Check that the result meet the specifications

4.3.1 Model plant statement

Let the plant be modeled as a first order transfer function with delay or dead time.
This transfer function is declared in MATLAB by the statements on the command window
shown in Figure 4.1.

4.3.2 Stability conditions

The transfer function G(s) includes a pure delay. It can be written for analysis pur-
poses by means of an nth approximation of Padé method for any desired order.

In MATLAB’s command window is introduced pade(g,2), the arguments are the func-
tion to approximate G(s) and the expansion order. In Figure 4.2 it is exemplified the
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Figure 4.2: Padé approximation and its plot on MATLAB.

approach. To simplify the procedure of stability analysis can be used a first order ap-
proximation of the delay expression multiplied by the transfer function of the plant, then
apply Routh-Hurwitz criterion [33] to determine the maximum L and K from T . In the
example above stability is ensured if K < (2 ∗ T + L)/L.

4.3.3 Initial conditions and settings

Once FOMCON files are in the root directory of MATLAB the command fpid_optim is
typed and a new window pops up (Figure 4.3), that window contains four main sections.
Plant features, controller parameters, simulation parameters, algorithm and frequency
performance settings are inserted there. Some boxes are optional and other necessary to
start the tuning process.

The box corresponding to Plant model allows to call the name of the plant present
in the workspace, in this case it has been used g meaning the function G(s). The plant
type is automatically assigned when the ’Optimize’ button is pressed and there are two
types, tf and ftf, ordinary or fractional transfer function, this identification depends
on how G(s) was declared. The section Fractional PID controller parameters includes
three columns. The first column is for placing the initial values of the five parameters
Kp, Ki , λ, Kd and µ. It also has a tab with three tuning options: all parameters at once,
stop fixed gains or fixed exponents. The other two columns let assign the constraints
or bounds among optimization. In the case of Kp, Ki and Kd gains an initial value of 1
can be assigned, however the range of Kp as the main gain of the controller should be a
number greater than zero but less than the maximum gain allowed for the plant stability
in closed-loop, in this case it has been used the following values: 0.1 ≤ Kp ≤ 20, 0.01 ≤ Ki
≤ 10 and 0.01 ≤ Kd ≤ 10; the powers 1.01 ≤ λ ≤ 2 and 0.01 ≤ µ ≤ 0.9 with initial values
at the midpoint of the range, 1.5 and 0.5 respectively. The box Simulation parameters

is basically a section to adjust how long the simulation lasts and step-size, it could be left
intact at the beginning.

The Optimization and performance settings allow to specify the algorithm and con-
ditions to apply the controller tuning in the frequency domain. The toolbox comprises two
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Figure 4.3: FOMCON tuning interface running in MATLAB.

optimization algorithms and four options as performance metrics. Using the tabs on the
upper right corner we select optimize or fmincon functions with stop criteria ISE, IAE, ITAE

or ITSE; respectively: integral square error, integral absolute error, integral time-square
error and integral time-absolute error. Each combination of the two options has different
performance results, tests were performed with the same initial conditions and each sim-
ulation behaves differently. For example, a response with more overshoot than expected
was using optimize and a solution with fmincon spent more time to converge or had more
setting time instead because wider oscillations (fmincon: IP with ISE). The best option we
found for solving the proposed systems was fmincon: SQP with ITSE, its execution is fast
and both the time response and Bode plot are suitable.

Finally, three subsections allow us to enable the performance specifications that the
whole system has to fulfill, based on the tuning method proposed by Monje et al [9].
Gain margin (GM) and phase margin (PM) are located in the first subsection Gain and

phase margins, followed by the two functions of sensitivity to noise and disturbances
on Noise and disturbance rejection. The third division, Critical frequency and gain

variation robustness is used to enable the robustness against variations in the gain of
the plant, hence the crossover frequency ωc is specified there, altogether determines the
bandwidth of the system. The subsections are activated independently, in our case all
three are used to fully exploit the optimization process. The performance specifications,
taken from [1] in order to make a comparison, were GM = 20dB, PM = 51.83◦ if ζ = 0.5
(or MP ' 16.3%), T (s) ≤ −10dB ∀ω ≥ ωt = 10rad/s, S(s) ≤ −20dB ∀ω ≤ ωs = 0.01rad/s
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Figure 4.4: Window of the command fomcon and its tools.

and ωcg = 0.5rad/s.

Figure 4.4 shows another way to declare a transfer function when fomcon at the
command line is typed if were necessary to work with a fractional type plant or make
a model of this kind. The command window shows the same plant but identified as a
fractional one since it has been created in the workspace using the tools of the application.
The options displayed in this window are very useful to visualize the response of the plant
declared in FOTF Viewer, both in time and frequency.

4.3.4 Verification of the tuning

At the end of the optimization process, once the "Optimize" button of Figure 4.3 is
clicked with the conditions described in section 4.3.3, the program indicates on the com-
mand window the margins of phase and gain reached and how long takes to conclude.
Values are updated as shown in Figure 4.5 and when selecting the option ”Take values”
on Figure 4.3 the optimization interface saves the controller parameters and opens a new
window that can simulate the response in time and frequency of the plant-controller. It
is shown in Figure 4.6 that this window has other tools, making each FOMCON’s inter-
face a dynamic tool for the design and simulation of fractional systems, from such data
we can simulate the final behavior of the system [38]. Figures 4.7 and 4.8 respectively
illustrates if the tuning goal has been reached, in the case of the transient response it has
greater overshoot (Mp = 28%) than desired (16%); the frequency response complies with
the specification MG = 20dB and MP = 51.83◦.

Generally speaking the criteria are met, for finer results one could try different initial
values or modify the valid range or, even, predefine certain gains and powers.
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Figure 4.5: Window with the optimization results and simulation data.

4.4 Neural networks tuning

Estimating a function using a restricted set of samples or input-output data pairs
without explicit knowledge of the shape of the function is a required skill in many situa-
tions, with the consequent application of efficient techniques in function approximation,
pattern recognition, artificial intelligence, machine learning and data mining [?,49].

One such technique is known as artificial neural networks which aims to achieve a
model or generalization network by training through a collection of input and output data
as a observation of independent events.

Consider a fractional order PID controller and a plant of the form

G(s) =
1

Ts + 1
e−Ls 4.6

The independent variables T and L are the two inputs of five neural networks, one
for each parameter Kp, Ki , λ, Kd and µ of the fractional order PID controller. This way,
by establishing a model that approximates the value of each controller parameter from
any pair (T, L) it is possible to allow an untrained user tune the controller for a particular
type of plant. That is the intention of using neural networks, a structure formed by a
set of algebraic equations, where the processing functions or neurons are radial basis
functions.

The proposed design procedure is as follows:

1. Generate an ordered set of input [T, L] and output data [Kp, Ki , λ, Kd , µ], where the
output data is obtained using the five parameter tuning method discussed in section
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Figure 4.6: Design Tool window with final system parameters.

Figure 4.7: Time response of the fractional system, Mp = 28%.

2.5.1.

2. Define the minimum and maximum number of neurons that are employed in the
neural network.

3. Define the characteristics of the Gaussian function: width, center position and slope
factor.

4. Choose the optimization algorithm.

5. Train the network to determine the interconnections among neurons: weights and
biases.

6. Validate the model by measuring the approximation error and using validation data.

7. Draw an algebraic network representation if necessary.
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Figure 4.8: Bode diagram, MG = 21dB and MP = 51◦

Figure 4.9: Three-dimensional relation of Kp, Ki , λ, Kd , µ with pairs (Ti , Lj)

4.4.1 Getting data

Consider the plant 3.13 and the set of restrictions described in section 2.5.1 or 4.3. In
order to establish the set of ordered input-output data the fractional controller is tuned.
Arrays of size 2xN and 5xN are generated, corresponding to the plant features and the
fractional controller, where N is the number of observations made. In this work N=49 is
considered.

Using the same plant model the workspace has been divided as follows: N1 = 7 × 7 =
49 cases; T1 = {1,8,15,22,29,36,43}; L1 = {0.1,0.4,0.7,1.0,1.3,1.6,1.9}

Table 4.1 contains the relation between pairs of T and L with Kp, Ki , λ, Kd and µ.
Figure ?? group those parameters rendering continuous surfaces in a three-dimension
space.

4.4.2 Neural network design in MATLAB

On the command window it is typed nntool to display an interface. To start using
neural networks in MATLAB data is imported in a vector form then the kind of network
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Table 4.1: Relation of the five FOPID controller parameters with pairs (Ti , Lj)

Kp 0.1 0.4 0.7 1.0 1.3 1.6 1.9

1 0.60333 0.3484 0.154 0.23912 0.20328 0.26002 0.23801

8 5.6152 2.9655 2.3975 1.8578 1.8903 2.4408 2.7885

15 0.30247 6.2516 4.2691 4.2656 3.8724 5.1338 4.5442

22 9.4025 9.294 6.4113 6.518 6.7452 3.6714 5.39

29 9.0355 10 9.8105 9.4755 3.8212 6.753 9.1943

36 9.5196 8.5074 10 10 9.5616 9.7211 9.3159

43 10 10 10 10 10 10 10

Ki 0.1 0.4 0.7 1.0 1.3 1.6 1.9

1 0.52411 0.53382 0.57744 0.50905 0.40359 0.38472 0.33274

8 0.81669 1.2436 0.86776 0.52087 0.52101 0.5405 0.58286

15 2.5761 2.3174 1.0188 0.95277 0.78609 0.54355 0.6131

22 2.9562 3.1164 1.3416 1.2586 0.88204 0.51597 0.30284

29 4.3938 3.0152 2.5653 1.7286 1.138 0.82363 0.9305

36 5.2305 3.6232 2.0191 1.5606 1.3252 1.2844 1.0509

43 4.93 4.223 2.4086 1.7781 1.3547 1.0232 1.0476

λ 0.1 0.4 0.7 1.0 1.3 1.6 1.9

1 0.0015889 0.090862 0.1372 0.13801 0.15178 0.22193 0.25044

8 0.01 0.01 0.52378 0.01 6.8313 1.046 1.8135

15 9.9688 0.77973 0.01 1.0465 1.1398 0.01 2.3951

22 0.026852 1.0069 0.01 1.4039 0.035807 1.035 3.7588

29 2.723 0.91653 3.4366 1.9071 6.4571 1.7578 3.7982

36 6.7523 5.0476 0.8284 0.70345 1.9071 4.5959 4.816

43 9.3444 6.1981 3.2334 2.6372 2.6143 2.0845 4.3079

Kd 0.1 0.4 0.7 1.0 1.3 1.6 1.9

1 1.079 1.0149 1.01 1.0118 1.01 1.01 1.0148

8 1.01 1.01 1.01 1.01 1.01 1.0317 1.0407

15 1.01 1.01 1.01 1.01 1.01 1.01 1.01

22 1.01 1.01 1.01 1.01 1.01 1.01 1.01

29 1.01 1.01 1.01 1.01 1.01 1.01 1.01

36 1.01 1.01 1.01 1.01 1.01 1.01 1.01

43 1.01 1.01 1.01 1.01 1.01 1.01 1.01

µ 0.1 0.4 0.7 1.0 1.3 1.6 1.9

1 0.66343 0.73174 0.6223 0.89977 0.89479 0.87995 0.83193

8 0.60856 0.01 0.89664 0.01 0.88383 0.89391 0.9

15 0.28551 0.88336 0.01 0.9 0.74381 0.01 0.88923

22 0.34164 0.9 0.01 0.9 0.043406 0.9 0.077545

29 0.01 0.01 0.9 0.9 0.01 0.9 0.87963

36 0.080977 0.01 0.01 0.01 0.87855 0.9 0.9

43 0.01 0.01 0.01 0.01 0.9 0.01 0.9
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Figure 4.10: Data importing window of MATLAB

we want to build is chosen. The MATLAB toolbox employs by default a nonlinear function
in the hidden layer and one linear in the output layer. The network settings comprises
defining the training algorithm, the number of neurons in the hidden layer and the stop
criterion [72–74]. Figure 4.10 refers to the selection of both vectors, the input to plant
and output controller vector, always is necessary to use this tool, during the importing
process as at the end once one have results to save of the trained network.

After the configuration of the network is done, you are asked to run the network to
create it in the workspace and start the training. Figure 4.11 shows the appearance of the
neural network configuration interface where some modifications could be done, however,
this is an option because declaring the network from the command window is usual.

During the training one would expect the network identifies the outline of the cor-
responding function to output vector from the input data. When the number of used
neurons as the evaluations increases, the error gradually decreases to a desired objec-
tive, ideally null. The image in Figure 4.12 shows the decline in the error value according
to the progress in training.

If the results show a poor performance the training can be re-executed where a random
portion of the data will be taken mostly to train the network and the rest to make a test
of the model accuracy until network parameters found are satisfactory.

When saving the final network parameters in MATLAB’s workspace it means that a
useful model remains and can be used to obtain fresh original data. Then, new infor-
mation can be extracted at command line. An array with the pair of T and L desired
is sent through the network input so the result is an output vector with five controller
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Figure 4.11: Neural network design in the NN Toolbox

Figure 4.12: Training result showing the convergence to the goal

parameters that meet the design specifications.
With the training results saved, the 5 parameters of a FOPID controller can be cal-

culated for any particular case. Here five networks were made and must be imported
from the saved file to the workspace in order to calculate new outputs from the trained
network. Figure 4.13 indicates the view of the window once the characteristics of the
network has been established and the training successfully performed. It also shows the
validation of the data obtained in terms of setting time and overshoot in the transient
response as the frequency margins with the aid of FOMCON.

Figure 4.14 also shows how new data from some specific cases of the tuned FOPID
controller parameters are validated. In this work the validation process is performed in
at least four ways: using FOMCON tools, using Simulink according to our block approxi-
mation, with Spice simulations and discrete circuit test.

In Figure 4.15 are located the responses in time for the simulations in MATLAB
Simulink and LTSpice of the system described in [1] and the results obtained with the
network tuning for the same system.

On the left side there are four graphs, the first in yellow is the input, the second in
purple is the response of the system with an integer PID, the third in blue was obtained
in the former paper and the last in red is the response of the neural network. This has
almost zero overshoot and a settling time of 8 seconds.
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Figure 4.13: Network configuration window during the training

Figure 4.14: Command window output obtained from the neural network model
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Figure 4.15: Response in the time obtained with LTSpice of the system tuned to the neural
network and the one published by [1]

In the next box, are the graphs with plant Gain = 8, 4, 2, 1, 0.5, 0.25, 0.125 in
the same order of appearance. There is relative uniformity in the overshoot, especially
in Gain=8, 1 and Gain=4, 2 of about 1 percent while Gain=0.5, 0.25, 0.125 shows no
overshoot neither error for long times.

Finally, on the right side of this image, three graphs are displayed. The green one is
the input to the system formed by OpAmps, resistor and capacitors in the corresponding
approximation equivalence of the neural networks tuning. The yellow is the response
of the system under comparison and the purple line is the response of the proposed
tuning. Mp = 7.5 percent and Ts = 8 seconds for the reported system while in our tuning
Mp = 0 and Ts = 12 s. With this, we can infer that the simulations in FOMCON, the
results applied to block diagrams and the simulations at circuit level are equivalent to
the realization with discrete elements and FPAAs.
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5.1 Introduction

A methodology for design and implementation of fractional order filters with asymmet-
ric slopes, enhanced selectivity or large notch magnitudes is introduced. This method-
ology is explained for the case of band-reject response generalized from the second-
order to the fractional-order domain and is based on the analog implementation of frac-
tances introduced in Chapter 3, the proposed strategy allows the implementation with
commercially- available values of resistances and capacitors.

The most remarkable development in filter theory dates from the early decades of last
century [75–77]. As signal processing in electronics engineering became more relevant,
this branch of knowledge evolved rendering filter structures capable of accomplish func-
tions whose theoretical background is rigorous and elegant at the same time. Some of
the assignments that analog filters can carry on include: frequency duplexing in radar
and radio communication systems [78]; impedance matching in power amplifiers [79];
upper-sideband and lower-sideband suppression in upconversion and downconversion
mixers [80], respectively; anti-aliasing in data converters [81]; and removal of powerline
noise from biomedical signals [82], among others. If difficult trade-offs in their implemen-
tation did not limit their usefulness, continuous time filters would be employed in many
more applications. Such is the case of analog fractional order filters (FOFs), whose physi-
cal realization is rather bulky and hard to accomplish with either commercial component
values [83] or in a chip realization with [84]. Probably, the major disadvantage of the
reported FOFs is their futility for a practical realization [85–87].

Typically, RC values in the fractor ladder of the FOF are not commercially available.
Thus, the implementation of FOFs still is an open problem. Therefore, a design method-
ology for the implementation of FOFs with asymmetric slopes, enhanced selectivity and
large notch magnitudes is introduced in this chapter using the analog implementation of
fractances introduced in Chapter 3. Look up tables are provided to perform the entire
design of the filter starting from only two specifications: the natural frequency and the
quality factor. HSPICE simulation results with Operational Amplifiers (OPAMPs) uA741
of fractional band-reject filter with fractional orders α = (0.1, 0.3, 0.5, 0.6, 0.9) and quality
factors Q ∈ (1,650) are provided to validate the proposed methodology.

5.2 Band-reject fractional order filter

The fractional-order band-reject filter with asymmetric magnitude characteristic in-
troduced in [88] has the transfer function

HBR(s) =
Vout(s)
Vin(s)

=
s2 + r1

s2 + r2s1+α + r3
5.1

where 0<α<1 and r1, r2, r3 ∈ R+. Contrary to other reported fractional-order band-
reject filters (for instance the reported in [89] and [90]), the transfer function (5.1) is
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Figure 5.1: Magnitude response of the band-reject filter for r1=r2=1, r3=2, and
α=(0.1,0.3,0.6,0.9).

Figure 5.2: Q factor of the band-reject fractional-order filter versus r2 with r1=1, r3=2 and
α=(0.1,0.3,0.5,0.7,0.9).
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characterized by simultaneous large values of notch magnitude and quality factor, with a
trade-off between these two quantities. The central frequency ωn and magnitude response
|HBR(jω)| of (5.1) can be calculated as

ωn =
√
r1 5.2

|HBR(ω)| =

∣∣∣r1 − ω2
∣∣∣√

1 + 2
(
r3 − ω2

r2ω1+α

)
sin

(απ
2

)
+

(
r3 − ω2

r2ω1+α

)2
5.3

Figure 5.1 depicts |HBR(ω)| for the cases r1=r2=1, r3=2, α=(0.1,0.3,0.6,0.9) and f ∈
(0.07Hz,0.4Hz). This range includes ωn normalized to 1rad/s. As can be observed, an
asymmetric response with notch magnitudes as large as 60dB is obtained. To calculate
numerically the corresponding quality factor Q it is assumed that α can be expressed as a
rational number α= k

m . Then, it is performed a transformation of the denominator of (5.1),
from the s-plane to the W -plane, by means of s=Wm [89]. The resulting characteristic
equation becomes

W2m + r2W
(m+k) + r3 = 0 5.4

A stable system if reached if the argument of all the 2m poles of (5.4) satisfy |θW |> π
2m

[89]. The quality factor is determined from the pair of complex conjugate poles closest
to the stability boundary |θW |= π

2m . These poles, denoted as ω1,2=ωr±jωi , are brought
back to the s-plane by means of the transformation p1,2=(ω1,2)m . This way, the dominant
biquadratic term Sd=(s−p1)(s−p2) results

Sd = s2 − 2(ωr + ωi)
m
2 cos

{
m arctan

(
ωi
ωr

)}
+ (ωr + ωi)m 5.5

which corresponds the quality factor

Q = −
1

2 cos
{
m arctan

(
ωi
ωr

)} 5.6

The relationship Q vs r2, with r1=1, r3=2 and α=(0.1,0.3,0.5,0.7,0.9) is plotted in
Fig. 5.2. Values of Q as large as 650 are obtained. It can be observed that Q increases if
α increases and r2 diminishes, i.e., Q increases if the denominator of (5.1) approximates
to s2+r3, a therm with infinite quality factor.

5.3 Block diagram decomposition

The procedure to approximate the transfer function HBR(s) with integer order integra-
tors is also based on algebraic manipulations of (5.1). The resulting realization, described
next, require only three basic building blocks: Weighted Differential Amplifier (WDA),
Weighted Two-input Adder Amplifier (WAA) and integer-order Inverter Integrator (IInv).

79



Chapter 5. Further applications of fractional Laplace operators
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+

+AVi
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Figure 5.3: Block diagram of the fractional-order reject-band filter.

5.3.1 Band-reject filter

Considering (5.1) as the transfer function of a system with input Vin(s) and output
Vout(s) and after performing algebraic manipulation of it is obtained

Vout(s)
(
s2 + r2s

1+α + r3
)

= Vin(s)
(
s2 + r1

)
5.7

Now, dividing both sides of (5.7) by s2 and collecting similar terms results

Vout =
r1Vin − r3Vout

s2 − r2
sα

s
Vout + Vin 5.8

which can be realized with the block diagram representation of Fig. 5.3, composed by two
blocks WDA (WDA1 and WDA2), three blocks IInv (IInv1, IInv2 and IInv3), one block WAA
(WAA1) and a fractional-order derivator, DFrac, with input Vi and output Vo. The block
diagram to implement DFrac is also depicted in Fig. 5.3. It is obtained by considering
(3.1) as a transfer function with input Vi and output Vo given by

Vo
Vi

=
As + 1
s + A

5.9

Then, by performing algebraic manipulation of (5.9) and after dividing both sides of
the resulting equation by s it is obtained

Vo =
Vi − AVo

s
+ AVi 5.10

In agreement with (5.10), the block diagram DFrac can be composed by means of one
block WDA, one block IInv and a block WAA (blocks WDA3, IInv4 and WAA2 of Fig. 5.3).
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5.4 OpAmp-based building blocks

This section presents OpAmp-based implementations of the block diagrams of Fig.
5.3. This realization are based on the use of the three basic building blocks, WDA, WAA
and IInv, which are described next.

5.4.1 Weighted Differential Amplifier (WDA)

It is an electronic amplifier that amplifies the weighted difference between two voltages
but does not amplify the particular voltages. Fig. ?? shows a possible implementation
with an Operational Amplifier. By nodal analysis of this circuit is calculated the output
voltage Vout,A as

Vout,A =
Rg
Rg1

V1A −
Rg
Rg2

V2A 5.11

where Rg can be used as degree of freedom in order to establish the ponderation factors
of V1A and V2A by means of resistors Rg1 and Rg2.

5.4.2 Weighted Adder Amplifier (WAA)

This amplifier produces an output voltage Vout,B equal to the weighted sum of the
two input voltages V1B and V2B. The OpAmp realization of Fig. ?? uses Rg as degree
of freedom and Rh1 and Rh2 to control the ponderation factors. The output voltage is
expressed as

Vout,B =
Rg
Rh1

V1B +
Rg
Rh2

V2B 5.12

5.4.3 Inverter Integrator (IInv)

The OpAmp based integrator depicted in Fig. ?? uses capacitive feedback to integrate
the applied signal. The transfer function of this circuit becomes

Vout,C
V1C

= −
1

RxCxs
= −

1
s

5.13

with Cx as degree of freedom and RX=1/Cx .
To move ωn by a factor Ω it can be used the following frequency denormalization in

the capacitors of all the employed inverters:

C =
Cx
Ω

5.14

5.5 Circuit implementation and design equations

5.5.1 OpAmp-based band-reject filter

The block diagram of Fig. 5.3 can be implemented using the OPAMP-based building
blocks of Fig. 7 as is shown in Fig. 5.4. Table 5.1 resume the design equations used to
obtain the required values of all the involved resistors, with Rg and Cx as degrees of liberty,
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fractional derivator
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Figure 5.4: Discrete implementation of the fractional order reject-band filter.

Table 5.1: Design equations for the circuit of Fig. 5.3 with Rg and Cx as degrees of liberty.

WDA1 WDA2 WDA3 WAA1 WAA2

Rg1=
Rg
r3

Rg1=
Rg
r2

Rg1=
Rg
A

Rh1=Rg Rh1=Rg

Rg2=
Rg
r1

Rg2=Rg Rg2=Rg Rh2=Rg Rh2=
Rg
A

A = (1 + α)/(1 − α), Rx = 1
Cx

Table 5.2: Design equations for the fractional-order derivator.

WDA3 (Rg2=Rg) WAA2 (Rh1=Rg)

α=0.1 Rg1=0.8181Rg Rh2=0.8181Rg
α=0.2 Rg1=0.6666Rg Rh2=0.6666Rg
α=0.3 Rg1=0.5384Rg Rh2=0.5384Rg
α=0.4 Rg1=0.4285Rg Rh2=0.4285Rg
α=0.5 Rg1=0.3333Rg Rh2=0.3333Rg
α=0.6 Rg1=0.25Rg Rh2=0.25Rg
α=0.7 Rg1=0.1764Rg Rh2=0.1764Rg
α=0.8 Rg1=0.1111Rg Rh2=0.1111Rg
α=0.9 Rg1=0.0526Rg Rh2=0.0526Rg

and with Rx =
1
Cx

and A = (1 + α)/(1 − α). These equations were obtained by comparing

(5.8) and (5.10) with (5.11), (5.12) and (5.13). Additionally, Table 5.2 presents the design
details of the block DFrac (fractional derivator) for different values of the fractional order α.
This table was obtained from Table 5.1 by substituting each value of α in A = (1+α)/(1−α).

5.6 Design Methodology

This section formalizes a five-steps methodology for the design and implementation of
the band-reject fractional-order filter previously described. This methodology is based on
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Fig. 5.1, Fig. 5.2, Table 5.1 and Table 5.2.

• Step 1. For the reject-band filter, with r1=1, r3=2 and the desired value of Q, obtain
r2 and α from Fig. 5.2.

• Step 2 The reject-band filter has a normalized frequency ωn=1rad/s.

• Step 3 For the reject-band filter, calculate Ω=ω̂n, where ω̂n is the desired (denor-
malized) center frequency.

• Step 4. Select a commercially available value C for all the capacitors of the blocks
IInv. Then, calculate Cx=ΩC and chose Rx=1/Cx for all the blocks IInv. It is desired
that Rx be on the range of kilo-ohms in order to stablish a good tradeoff between
noise contributions and power consumption.

• Step 5. To design the blocks WDA, WAA and IInv of Fig. 5.3, chose a commercially
available value of Rg and calculate all the resistors Rg1, Rg2, Rh1 and Rh2 with Table
5.1. If α=(0.1,0.2, ..,0.9) then it can be used the Table 5.2 to design the blocks
WDA3 and WAA2.

5.7 Results

OpAmp-based band-reject filter with fn=60Hz and Q ≥ 2.
The OpAmp-based realization of the band-reject filter of Fig. 5.4 is composed by 9

OPAMPs, 34 resistors and 4 capacitors. The methodology introduced in Section 5.6 is
employed to describe the design of the filter with the following specifications: r1=1, r3=2,
fn=60Hz and Q ≥ 2. Then, the filter is modified to establish α=(0.3,0.5,0.6,0.9).

• Step 1. With the desired specifications are obtained, r2=1 and α=0.5.

• Step 2. The normalized natural frequency is ωn=1rad/s.

• Step 3. It is calculated Ω=2π(60Hz).

• Step 4. The selected commercially available value for the capacitors is C=1µF ,
resulting Cx=377µF and Rx≈2.7KΩ.

• Step 5. For the commercially available resistor Rg=10KΩ and for each value of
α=(0.3,0.5,0.6,0.9) are calculated all the resistors Rg1, Rg2, Rh1 and Rh2 of Fig.
5.4 using the Table 5.1 and the Table 5.2. The design details are summarized in
Table 5.3. Note that the values of all capacitors are commercially available and the
values of all resistors are commercially available or can be easily approximated with
resistor arrays.

The simulation results of the band-reject filter were obtained from simulations per-
formed in HSPICE with the model of the Operational Amplifiers uA741 (rated bandwidth
1MHz and open loop gain of 60dB) and with the design details in Table 5.3. This charac-
teristics shows good agreement with the theoretical response of Fig. 5.5, with deep notch
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Table 5.3: Design details for the circuit of Fig. 5.4.

WDA1 WDA2 WDA3 WAA1 WAA2 IInv1, IInv2, IInv3, IInv4

α = 0.1 Rg1=5KΩ Rg1=10KΩ Rg1=8.2KΩ Rh1=10KΩ Rh1=10KΩ Rx = 2.7KΩ

Rg2=10KΩ Rg2=10KΩ Rg2=10KΩ Rh2=10KΩ Rh2=8.2KΩ Cx = 1µF

α = 0.3 Rg1=5KΩ Rg1=10KΩ Rg1=5.3KΩ Rh1=10KΩ Rh1=10KΩ Rx = 2.7KΩ

Rg2=10KΩ Rg2=10KΩ Rg2=10KΩ Rh2=10KΩ Rh2=5.3KΩ Cx = 1µF

α = 0.5 Rg1=5KΩ Rg1=10KΩ Rg1=3.3KΩ Rh1=10KΩ Rh1=10KΩ Rx = 2.7KΩ

Rg2=10KΩ Rg2=10KΩ Rg2=10KΩ Rh2=10KΩ Rh2=3.3KΩ Cx = 1µF

α = 0.6 Rg1=5KΩ Rg1=10KΩ Rg1=2.5KΩ Rh1=10KΩ Rh1=10KΩ Rx = 2.7KΩ

Rg2=10KΩ Rg2=10KΩ Rg2=10KΩ Rh2=10KΩ Rh2=2.5KΩ Cx = 1µF

α = 0.9 Rg1=5KΩ Rg1=10KΩ Rg1=0.5KΩ Rh1=10KΩ Rh1=10KΩ Rx = 2.7KΩ

Rg2=10KΩ Rg2=10KΩ Rg2=10KΩ Rh2=10KΩ Rh2=0.5KΩ Cx = 1µF

Table 5.4: Simulation results of the band-reject filter with fn= 60Hz, r1 = 1, and r3 = 3 for
α=(0.3,0.5,0.6,0.9)

fn Q Q

Simulated Equation (5.6)

α = 0.1 58.67Hz 1.04 2.16

α = 0.3 58.68Hz 1.34 2.48

α = 0.5 58.68Hz 2.03 3.32

α = 0.6 58.68Hz 2.66 4.37

α = 0.9 58.68Hz 12.19 14.75

Figure 5.5: Simulated magnitude response of the reject-band filter for
α=(0.1,0.3,0.5,0.6,0.9).

magnitudes as large as -56dB. The deviation from the theoretical curve (mainly in the
plot corresponding to α=0.9) is attributed to the op-amp non-idealities and the error in
the approximation of sα. Table 5.4 summarizes performance. As can be observed, for the
reject-band filter a very similar value to the desired 60Hz was obtained.

The obtained values of Q are above the values obtained by numerical simulation of 5.6,
it is attributed to the error introduced by the first-order approximations of sα. Despite
this disadvantage large values of Q were obtained with compact realizations and with
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commercially available values of resistors and capacitors.
A procedure for the realization of OPAMPs based FOFs and FPAAs based FOFs has

been introduced. The usefulness of the suggested approach lies on the use of, solely,
commercial value resistors, capacitors and OPAMPs, avoiding the use of inductors and
negative impedance converters. The key idea is to manipulate algebraically the network
function, including the rational functions who approximate the fractional order integra-
tors and differentiators. The resultant increase of the degrees of freedom allows the rise
of the circuit elements with commercial values. In addition, look up tables are provided
to perform the entire design of the FOFs of order (2 − α) ∈ (0,2) starting from two specifi-
cations: the natural frequency fn , and the quality factor of the filter Q.
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An alternative for the analog implementation of integrators and differentiators of
fractional order has been introduced. The implementation includes differential
amplifiers, adders and integrators of integer order. This proposal was validated
simulating (MATLAB and HSPICE) PI and PID controllers of fractional order, and with
their realizations using OpAmps and FPAAs. After comparing the results with respect to
an equivalent realization from Cauer networks, it was appreciated that in addition to a
reduction in the design process, also the number of capacitors and active elements was
reduced. Also, the proposal of implementation has the advantage of including degrees of
freedom that allow selecting circuit elements or commercial values. These advantages
could increase the use of fractional-order PID controllers in industrial applications.
Most important is that our proposed implementation for fractional-order integrators and
differentiators can be extended to other applications like fractional-order filters, chaotic
systems or fractional memristores.

This research also presented a method to carry out OPAMPs based Fractional Order
Filters (FOFs) and FPAAs based FOFs. Were attended design examples for the
band-pass and band-reject cases. However, the proposed method applies to other
network functions, such as low-pass, high-pass and all-pass FOFs. Besides, the
suggested method extends the opportunity for a practical realization of Fractional Order
Operators used in circuits such as fractional order controllers, fractional order chaotic
oscillators and fractional order memristors, to name a few. The usefulness of the
proposed approach lies on the use of commercial resistors, capacitors and OPAMPs,
avoiding the use of inductors and negative impedance converters. The key idea is to
manipulate the network function, including the rational functions that approximate the
fractional order integrators and differentiators. The resultant increase of the degrees of
freedom allows the rise of the circuit elements with commercial values. In addition, look
up tables are provided to perform the full design of the FOFs starting from two
specifications: the natural frequency and the quality factor of the filter. Compared to
other reported FOFs, the designs synthesized herein required, slightly, more active
elements but with passive element values commercially available. The attained Q values
are larger than the theoretical expected values, which results from use a first order
approach of the fractional order integrators and differentiators. Then, as an alternative,
the use of FPAAs was carried out to use their ability of adjusting, on line, the desired
parameters of the FOFs.
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